Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials

نویسنده

  • M. Cervera
چکیده

One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy. Keywords—Ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of LSM, LSF, and LSCo for Solid Oxide Electrolyzer Anodes

Composite electrodes of yttria-stabilized zirconia (YSZ) with La0.8Sr0.2MnO3 (LSM), La0.8Sr0.2FeO3 (LSF), and La0.8Sr0.2CoO3 (LSCo) were prepared and tested as solid oxide electrolyzer (SOE) anodes and solid oxide fuel cell (SOFC) cathodes at 973 K, using cells with a YSZ electrolyte and a Co-ceria-YSZ counter electrode. The LSM-YSZ electrode was activated by cathodic polarization but the enhan...

متن کامل

The Effect of cathode Porosity on Solid Oxide Fuel Cell Performance

In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type o...

متن کامل

Hydrogen Production via CH4 and CO Assisted Steam Electrolysis

Porous composite anodes consisting of a yttria-stabilized zirconia (YSZ) backbone that was impregnated with CeO2 and various amounts of metallic components including Cu, Co and Pd were fabricated. The performance of these anodes was then tested in a solid oxide water electrolysis cell under conditions where the anode was exposed to the reducing gasses H2, CH4 and CO. The reducing gasses were us...

متن کامل

The Effect of cathode Porosity on Solid Oxide Fuel Cell Performance

In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type of gr...

متن کامل

Preparation of NiO-YSZ/YSZ bi-layers for solid oxide fuel cells by electrophoretic deposition

A simple and cost-effective method, starting with electrophoretic deposition (EPD) on a carbon sheet, has been developed for preparation of a iO-YSZ anode and thin, gas-tight YSZ electrolyte layer on it for use in solid oxide fuel cells (SOFCs). The innovative feature of this approach nables the deposition of anode materials as well as the YSZ electrolyte, which were subsequently co-fired in ai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016